55 research outputs found

    Decentralised energy futures: The changing emissions reduction landscape

    Get PDF
    © 2015 The Authors. Published by Elsevier B.V. The world is witnessing an energy revolution as renewables become more competitive and energy security becomes a high priority for an increasing number of countries. This development is changing the point along the supply chain ripe for reducing emissions. Whereas carbon capture and storage (CCS) coupled to coal or gas power production offers the potential to decarbonise the current centralised power systems, this relies on a significant increase in electrification to achieve deep emission reductions beyond the power sector, including industrial emissions and transportation. At the same time there is a trend towards decentralised industrial processes, e.g., driven by cost reductions in decentralised production systems and miniature processing plant. New strategies for reducing emissions from decentralised industrial and energy emission point sources will be increasingly important. This paper evaluates different emission reduction strategies that may be relevant to a decentralised energy and manufacturing future, including increased electrification, energy storage, renewable energy and renewable feedstock. Systemic opportunities or barriers and considerations of policy and decentralised decision-making are examined

    Wind-pv-thermal power aggregator in electricity market

    Get PDF
    This paper addresses the aggregation of wind, photovoltaic and thermal units with the aim to improve bidding in an electricity market. Market prices, wind and photovoltaic powers are assumed as data given by a set of scenarios. Thermal unit modeling includes start-up costs, variables costs and bounds due to constraints of technical operation, such as: ramp up/down limits and minimum up/down time limits. The modeling is carried out in order to develop a mathematical programming problem based in a stochastic programming approach formulated as a mixed integer linear programming problem. A case study comparison between disaggregated and aggregated bids for the electricity market of the Iberian Peninsula is presented to reveal the advantage of the aggregation

    Mutations in TOP3A Cause a Bloom Syndrome-like Disorder

    Get PDF
    Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects’ cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis

    Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies

    Get PDF
    Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp(-/-) mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp(-/-) MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.This study was supported by the German BMBF and Horizon2020 through E-Rare project GENOMIT (01GM1603 and 01GM1207 to H.P.; FWF-I 2741-B26 to J.A.M.); Vereinigung zur Förderung Pädiatrischer Forschung Salzburg; EU FP7 MEET Project (317433 to H.P. and J.A.M.); Horizon2020 Project SOUND (633974 to H.P.); Marie Skłodowska-Curie Actions Reintegration Fellowship (Mitobiopath-705560 to C.G.); UK NHS Highly Specialised Mitochondrial Service (R.W.T.); Wellcome Centre for Mitochondrial Research (203105/Z/16 to Z.M.C.-L., R.N.L., and R.W.T.); MRC Centre for Neuromuscular Diseases (G0601943 to R.W.T. and P.F.C.); Lily Foundation (R.W.T. and K.T.); UK NIHR fellowship (NIHR-HCS-D12-03-04 to C.L.A.); Wellcome Senior Fellowship (101876/Z/13/Z to P.F.C.); UK NIHR award and MRC Mitochondrial Biology Unit (MC_UP_1501/2 to P.F.C.); NIH (R01 GM0077465 and R35 GM122455 to V.K.M.); EMBO fellowship (ALTF 554-2015 to A.A.J.); UK MRC core funding for the Mitochondrial Biology Unit of the University of Cambridge (MC_U105697135 to A.R.D., P.R.G., and M. Minczuk); Portuguese Fundação para a Ciência e a Tecnologia (PD/BD/105750/2014 to P.R.G.); Italian Telethon (GSP16001 to G.P.C.); Fondazione Cariplo (2014-1010 to D.R.); Strategic Research Center in Private Universities from MEXT; and Practical Research Project for Rare/Intractable Diseases from AMED

    Magnetic susceptibility of Tri-Coordinated copper(II) complexes

    No full text

    Towards a circular economy for end-of-life vehicles: A comparative study UK - Japan

    No full text
    As the European Directive on end-of-life vehicle (ELV) treatment has heavily influenced policies in many countries, car manufacturers need to reconsider the early phases of the product design to enable better ELV treatment. This paper proposes policy, technical and business recommendations to improve the reuse, recycling and recovery (RRR) rate of ELVs. A comparative analysis between the United Kingdom and Japan is undertaken, in which the two countries' contextual background is described along with their RRR performance from a lifecycle perspective. Barriers and countermeasures to improve the RRR rates are discussed based upon mutual learning between the two countries

    Designing backcasting scenarios for resilient energy futures

    Full text link
    © 2017 Elsevier Inc. The concept of resilience is a crucial part in crafting visions of desirable futures designed to withstand the widest variety of external shocks to the system. Backcasting scenarios are widely used to envision desirable futures with a discontinuous change from the present in mind. However, less effort has been devoted to developing theoretical frameworks and methods for building backcasting scenarios with a particular focus on resilience, although resilience has been explored in related sustainability fields. This paper proposes a method that helps design backcasting scenarios for resilient futures. A characteristic of the method is to delineate “collapse” futures, based upon which resilient futures are described to avoid the various collapsed states. In the process of designing backcasting scenarios, fault tree analysis (FTA) is used to support the generation of various risk factors and countermeasures to improve resilience. In order to test the effectiveness of the proposed method, we provide a case study to describe resilient energy systems for a Japanese community to 2030. Four expert workshops involving researchers from different disciplines were organized to generate diversified ideas on resilient energy systems. The results show that three scenarios of collapsed energy systems were described, in which policy options to be taken toward achieving resilient energy systems were derived
    corecore